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This paper presents a novel method for Glioblastoma (GBM) feature extraction based on Gaussian mixture model (GMM) features
using MRI. We addressed the task of the new features to identify GBM using T1 and T2 weighted images (T1-WI, T2-WI) and
Fluid-Attenuated Inversion Recovery (FLAIR) MR images. A pathologic area was detected using multithresholding segmentation
withmorphological operations ofMR images.Multiclassifier techniques were considered to evaluate the performance of the feature
based scheme in terms of its capability to discriminate GBM and normal tissue. GMM features demonstrated the best performance
by the comparative study using principal component analysis (PCA) and wavelet based features. For the T1-WI, the accuracy
performance was 97.05% (AUC = 92.73%) with 0.00% missed detection and 2.95% false alarm. In the T2-WI, the same accuracy
(97.05%, AUC = 91.70%) value was achieved with 2.95% missed detection and 0.00% false alarm. In FLAIR mode the accuracy
decreased to 94.11% (AUC = 95.85%) with 0.00%missed detection and 5.89% false alarm.These experimental results are promising
to enhance the characteristics of heterogeneity and hence early treatment of GBM.

1. Introduction

Providing quantitative and accurate information for medical
diagnosis, Magnetic Resonance Imaging (MRI) plays an
essential role in medical imaging [1]. MRI has several advan-
tages over other medical imaging techniques regarding its
multiple applications, namely, for cardiovascular, muscu-
loskeletal, and, in particular, for imaging of the brain and
neurological systems [2, 3]. However, a bottleneck of MR
image processing arises from variations in intensity due to
B1 and B0 field inhomogeneity [4, 5]. This is manifested by
the nonuniform appearance even of a single tissue whichmay
mislead image analysis algorithms, which enhance abnormal-
ity area detection by a segmentation model [2, 6].

In the last decade, MR imaging established itself as key
imagingmodality in diagnosis and follow-up of brain tumors
including Glioblastoma (GBM) [7]. GBM is the most com-
mon primary malignant brain tumor in adults [8]. It is char-
acterized by abnormal and uncontrolled cell proliferation,
necrosis, and vascular proliferation [9]. Despite the ongoing
research and clinical trials, GBM remains one of the most

aggressive malignant tumors with less than 5% of patients
surviving five years after diagnosis [10]. This is attributed to
the highly infiltrative nature and the heterogeneity that
Glioblastoma exhibits on molecular and genomic levels
which lead to differences in individual treatment response
and prognosis [11].

Accordingly, research has focused on exploring associa-
tions between certain imaging features and the underlying
genomic profiles of GBM in a new branch in clinical radi-
ology known as “imaging genomics” [12, 13]. Using a GMM,
Simon et al. recently showed that delineation and quantifica-
tion of apparent diffusion coefficient in gliomas can be per-
formed reliably and fast and demonstrated how thereby user-
dependent variability can automatically be removed [14].
Consequently, recent work has focused on developing robust
methods for reading and imaging features extraction from
such MR images.

Automatic reading algorithms can foster faster and more
precise readings of MR images as well as segmenting the
abnormal imaging areas to classify them as GBM or not.
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Figure 1: Analysis of GBM schema: (a) brain tumor image on axial T1-WI, (b) axial T2-WI, (c) axial FLAIR sequence, and (d) GBM data
fitting in three MR sequences.

Robust reading of MR images includes several consecutive
steps. The system must first segment the image by detecting
and extracting the abnormal area from their surrounding
mediumusingmultithresholding segmentation andmorpho-
logical image processing. This step requires careful selection
of the appropriate segmentation methodology for processing
of high resolution grayscale MR images. While several seg-
mentationmethods based onMR images have been proposed
using filtering to remove noise, these techniques are not gen-
erally applicable to automated detection of GBMas the tumor
can be unintentionally eliminated during the process of
noise reduction. Segmentation methods based on threshold-
ing or multithresholding are thus preferred.

That way, it is likely that GBM and the normal brain
tissue “survive” the thresholding. This method divides an
image into several regions using multithresholding [15–18].
The second step following the detection of area of imaging
abnormality, representing GBM, involves extraction of some
characteristic parameters and texture features that are specific
for GBM [19–26]. Plurals based on the texture features were
proposedwhere the visual analysis of texture is a difficult task,

particularly with GBM. The texture analysis based on gray
level cooccurrence matrix (GLCM) determines neighbor-
hoods around pixels (texture elements) where the GLCM is
counted using the specific offset and phases [27]. Also, shape
and texture feature were used to classify the brain tumor type
and grade using SVMmodel; however the classifier accuracy
was limited by 85% [28].

Moreover, the feature quality is essential to improve
the classifier accuracy and accordingly the applications. For
example, wavelet based classification has proven to be a pow-
erful technique [29–31]. However, due to its comparatively
low classification accuracy this approach was not promising
to follow in our MRI data. We therefore aimed to investigate
GBM tumor features that may have the potential to measure
specific GBM characteristics. To achieve this, we focused
on features derived from Gaussian mixture model (GMM)
analysis on both weighted T1 and T2 and FLAIR sequences.

Figure 1 shows 2D axial image of brain within GBM
region indicated by the red line in Figure 1(a). Clearly, GBM
area has higher intensity on the grayscale level brain MR
image, but some pixels of normal brain share the same
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Figure 2: Schematic diagram of the proposed method for automatic feature extraction.

intensity values as theGBMpixels.These pixels closely resem-
ble theGBMpixels in terms of their intensity, renderingGBM
detection a difficult task. Also, histogram of GBM area is not
similar in the three MRI sequences.

2. Materials and Methods

The schematic of the proposed method is shown in Figure 2:
(1) preprocessing to normalize grayscales and filtering to
remove the noise from images in the three MRI sequences,
T1-WI, T2-WI, and FLAIR; (2) tumor (GBM) areas detection
by multithresholding segmentation and normal areas deter-
mined from the normal brain material; (3) feature extraction
from theGMMcurve fitting of the grayscale histogramonT1-
WI, T2-WI, and FLAIR images; (4) applying three classifier
techniques to discriminate between the tumor areas and
normal areas based on GMM features; and (5) validating the
effect of GMM features by comparative study with PCA and
wavelet features.The details of the schematic are given below.

2.1. Data Acquisition. A data set of 17 patients was collected
by November 2013 from the publicly available Cancer Imag-
ing Archive (http://www.cancerimagingarchive.net/) data-
base for our preliminary study. We excluded patients with
incomplete imaging data set. All of the images had 512 × 512
pixels acquisition matrices and were converted into grayscale
before further processing. MRI raw data were filtered to
remove noise and standardized by the linear normalization,
followed by multithreshold-based segmentation. This tech-
nique was applied to determine the tumor position and was
successfully applied for the GBM data collection process.
Note that preprocessing of skull stripping is required; it
is necessary to obtain only the brain material without the
skull bone; however, multithresholding segmentation with
morphological operation filter may be detecting GBM area in
two-dimension axial image. In this context, automated oper-
ation can be a difficult task if the GBM area is smaller than
skull thickness.

2.2. Multithresholding Segmentation. Single threshold seg-
mentation for GBM region pixels may resemble normal brain
pixels. Segmentation based on multithresholding resolved
this problem. Accordingly, we carried out an initial estima-
tion of GBM localization by using multithresholding (mul-
tilevel image thresholds) segmentation method proposed by
Otsu [32]. This approach enabled the definition of thresholds

that maximize the interclass variances, thus also minimizing
the intraclass variances. It can offer multilevel image thresh-
olds in order to segment the desired object (brain tumor).
In our case, we adjusted the multithresholding of an image
for skull stripping and tumor detection. In order to robustly
detect GBM, we had to resolve the problem arising from
resembling pixels spots. This could be easily resolved by
median filter depending on the window size.

2.3. GMM Feature Extracted. Many GMM had previously
been considered in the literature for face identification [27],
which was found to offer the best trade-off in terms of
complexity, robustness, and discrimination. It has also been
used for voice identification based on the feature and score
normalization techniques [33, 34]. Also, GMMbased features
show promise accuracy classifier to distinguish between
target and ghost/clutter regions [35].

GMM is a parametric probability density function repre-
sented as a weighted sum of𝐾Gaussian component densities
according to
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where 𝜇
𝑖
was the average of a vector, 𝑇 is the transpose, and

Σ
𝑖
is the covariance matrix.
The complete Gaussian mixture model was parameter-

ized by the mean vectors, covariance matrices, and mixture
weights from all component densities. These parameters can
be expressed according to

𝜆 = {𝑤
𝑖
, 𝜇
𝑖
, Σ
𝑖
} . (3)

The variance (V
𝑖
) of components was represented by the

diagonal of the covariance matrix Σ
𝑖
. We extracted then
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a feature vector𝑅 from three components of GMMaccording
to

𝑅 = {𝑤1 ⋅ ⋅ ⋅ 𝑤3, 𝜇1 ⋅ ⋅ ⋅ 𝜇3, V1 ⋅ ⋅ ⋅ V3} , (4)

where 𝑤, 𝜇, and V are the weight, average, and variance of
GMM components (indexes 1, 2, and 3 are the first, second,
and third component of GMM).

Each segmented GBM area could be represented by the
feature vector 𝑅GBM that is of size 1 by 9 elements. A similar
feature vector size (𝑅

𝑁
) for normal area was computed.

For 𝑛 GBM areas, we had 𝑅𝑡GBM matrix that was of size
𝑛 by 9 elements, meaning 𝑛 samples. Similar matrix for the
area of normal brain was 𝑅𝑡

𝑁
. When computing the matrixes

𝑅𝑡GBM and 𝑅𝑡
𝑁
, the classification operation became ready.

2.4. Principal Component Analysis Applied on GMMFeatures.
In the following, we present a principal component analysis
technique to reduce the data and to get the appropriate feature
from each vector feature.

Each feature vector of GBM and of normal brain was
extracted from several Gaussian distributions which were
represented by the average, standard deviation, and weight.
Concatenating the parameters of GMM, this technique could
show the correlation between the features extracted. Fur-
ther, it could have been a good factor classifier to distin-
guish between GBM and normal brain tissue. Two matrixes
(𝑅𝑡GBM) and (𝑅𝑡

𝑁
) of 𝑛 GBM and normal samples were 𝑛 by

9, where each feature row concerns 9 elements. GBMandnor-
mal area samples of 𝑛 = 17 patients were arranged into data
matrixes 𝑅𝑡GBM and 𝑅𝑡

𝑁
according to

𝑅𝑡GBM = [𝑅1𝐺 ⋅ ⋅ ⋅ 𝑅𝑛𝐺]

𝑅𝑡
𝑁
= [𝑅1𝑁 ⋅ ⋅ ⋅ 𝑅𝑛𝑁] ,

(5)

where [𝑅
1𝐺
⋅ ⋅ ⋅ 𝑅
𝑛𝐺
] and [𝑅

1𝑁
⋅ ⋅ ⋅ 𝑅
𝑛𝑁
]were theGMMfeatures

of GBM and normal area, respectively.
Training data were received by 𝑅𝑡GBM and 𝑅𝑡

𝑁
. PCA

was employed, where the covariance of 𝑅𝑡GBM and 𝑅𝑡
𝑁
was

computed. The covariance matrix could be found according
to

𝐶GBM = cov (𝑅𝑡GBM) ,
𝐶
𝑁
= cov (𝑅𝑡

𝑁
) ,

(6)

where cov was the covariance.𝐶GBM and𝐶
𝑁
are the same size

9 by 9.
According to the following equation, the eigenvalues and

eigenvectors could be computed according to

𝐶𝑉 = Λ𝑉, (7)

where 𝑉 was the matrix of principal component and each
column in 𝑉 was an eigenvector. Λ was the diagonal matrix
where the diagonal elements were the values of the eigenval-
ues.

We organized the eigenvectors by their corresponding
eigenvalues and we retained three eigenvectors as the PCs of
the data from 𝐶GBM and 𝐶

𝑁
, respectively, where the higher

variance represented the three largest eigenvalues. Figure 3
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Figure 3: Principal components based on higher variance of GBM
and normal areas: (black curve) variance magnitude of 17 normal
areas from T1-WI, T2-WI, and FLAIR, (blue curve) variance mag-
nitude of 17 GBMs chosen from T1-WI, (red curve) variance mag-
nitude of 17 GBMs chosen from T2-WI, and (green curve) variance
magnitude of 17 chosen GBMs chosen from FLAIR mode of MRI.

shows the variance of eigenvalues of three MRI modes.
Clearly, the maximum variances common between T1-WI,
T2-WI, and FLAIR were located in the first three indexes of
eigenvalues. The matrix dimension of 𝑅𝑡GBM and 𝑅𝑡

𝑁
was

reduced by the projection of each row according to

𝑃
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= PC𝑇GBM (𝑅𝑡GBM) ,

𝑃
𝑁
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𝑁
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) ,

(8)

where { }𝑇 was the transpose indicator, PC𝑇GBM and PC𝑇
𝑁
were

the transpose of principal components of GBM and normal
area, respectively, and 𝑖 was the index of row in GBM matrix
𝑅𝑡GBM and normal area matrix 𝑅𝑡

𝑁
, respectively.

Using 3 PCs, a new matrix 𝑃GBM of GBM that was of
size 17 by 3 and matrix 𝑃𝑁 of normal area had a similar size.
We considered then three classifier models to evaluate GBM
andnormal areas discrimination based onGMMfeatures and
their three principal components, respectively.

2.5. Classifier Setting. In general, the goal of a learn-
ing/classification algorithm is to build a set of training exam-
ples with class labels. In this context, we implemented three
classifier techniques, namely, naı̈ve Bayes (NB) [36], support
vectormachine (SVM) [37], and probabilistic neural network
(PNN) [38]. The implementation of NB is performed using a
kernel estimation method which approximated the complex
distributions of the data. Then, SVM was implemented using
the Gaussian radial basis function, and radial basis network
based PNN was employed which is a fast classifier technique.
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Figure 4: GBM detection by segmentation and morphology operations: (a) T1-MR image, (b) image segmented by four levels, (c) range of
GBM gray level conserve, (d) filtering of (c), (e) raw GBM data detected, and (f) GBM located on the brain image.

The reason for using these specific classifier methods is to
achieve the trade-off performance which is reported.

Due to the limited data available (17 patients), validation
data sets were performed based on leave-one-out cross-
validation [39]. Performance metrics are expressed by the
following equations:
False Alarm

=

number of normal samples uncorrectly classified
total number of sample cases

,

Missed Detection

=

number of GBM samples uncorrectly classified
total number of sample cases

,

Accuracy

=

number of GBM and normal samples correctly classified
total number of sample cases

.

(9)

Moreover, receiver operating characteristic (ROC) curves
and the associated area under the curve (AUC) values were
computed to assess the discrimination between GBM and
normal areas [40]. The results of the performance metrics
reflected the succeeding GMM features for discrimination
between GBM and normal area. Note that the training data
set of the normal brain tissue regions represent different
normal regions within the MR image.

3. Experimental Results and Discussions

3.1. Segmentation of the GBM. GBM tumor tissue was
detected using the multithresholding segmentation based on
Otsu’s technique and the morphology operation to obtain
only the abnormal brain regions in robust term. Figure 4
shows GBM tumor segmented using several steps. The
process of tumor detection from MR images may appear to
be a difficult task as MR images contained some areas which
have a similar range of gray color (Figure 4(b)). Morphology
operators or filtering was necessary to remove noise like the
boundary of skull and brain (Figures 4(c) and 4(d)). Then
GBM was detected and located (Figures 4(e) and 4(f)).

3.2. GMMFeature Extraction andClassification. ThreeGMM
curve fittings based on the histogram analysis showed three
components of GBM (see Figure 5). Three Gaussian com-
ponents were chosen based on the empirical metrics which
showed three components of GBM. GMM features were
shown to be feasible for discriminating between GBM and
normal brain.

Table 1 shows a comparative study between the three
modes of MR images based on the classifier accuracy, false
alarm, and missed detection. These metrics represented the
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Table 1: Performance metrics (%) based on the GMM features.

Classifier Sequence Accuracy False alarm Missed detection

NB

T1-WI 97.05 2.95 0
T2-WI 97.05 0 2.95
FLAIR 94.11 5.89 0

∗Entire GBM 86.27 2.94 10.78

SVM

T1-WI 70.58 0 29.41
T2-WI 64.70 5.88 29.41
FLAIR 67.64 2.94 29.41

∗Entire GBM 66.66 4.90 28.43

PNN

T1-WI 94.11 5.89 0
T2-WI 70.58 11.76 17.64
FLAIR 94.11 2.94 2.94

∗Entire GBM 86.27 2.94 10.78
∗Entire GBM refers to T1-WI, T2-WI, and FLAIR features combined together.

Table 2: Performance metrics (%) based on the PCA features.

Classifier Sequence Accuracy False alarm Missed detection

NB

T1-WI 73.52 8.82 17.64
T2-WI 79.41 2.94 17.64
FLAIR 82.35 5.88 11.76

Entire GBM 68.62 15.68 15.68

SVM

T1-WI 55.88 0 44.11
T2-WI 61.76 8.82 29.41
FLAIR 85.29 0 14.70

Entire GBM 35.29 20.58 44.11

PNN

T1-WI 61.76 8.82 29.41
T2-WI 52.94 14.70 32.35
FLAIR 94.11 0 5.88

Entire GBM 51.96 9.80 38.23
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Figure 5: GMM curve fitting: example of GBM based GMM fea-
tures.

highest performance using NB classifier with the classifica-
tion accuracy range between 94.00 and 97.00%, false alarm
range between 0.00 (which means that the normal area
samples were correctly classified without error) and 5.89%,
and missed detection range between 0.00 (which means that
the GBM samples were correctly classified without error)
and 2.95%. This latter value of missed detection represented

the one GBM sample from 17 that was incorrectly classified
(or classified as normal area).

GMM features were reduced with a PCA, which
accounted for 97% of the cumulative variance from these
features. Table 2 shows the performance metrics of the
classifier accuracy based on the PCA. Clearly, the accuracy
was decreased in the two MRI sequences T1-WI and T2-WI
with the best performance achieved using BN classifier,
where the accuracy ranged between 73.52 and 79.41%, false
alarm ranged between 2.94 and 8.82%, and missed detection
is 17.64%. In FLAIR sequence, PNN model showed highest
value (94.11%, 0.00%, and 5.88%) of accuracy, false alarm,
and missed detection, respectively.

Clearly, the accuracy decreased in T1-WI and T2-WI
which reflected the lack of PCA features. In other words,
GBM features provided from GMM were likely independent
which was represented by the decrease accuracy value when
we applied the PCA, while FLAIR sequence showed a similar
value of 94.11%with GMMand PCA features which represent
the correlation between the features. This is also represented
by the highest correlation value of GMM features in the
FLAIR sequence (Figure 6), while the heat map of correlation
shows a less value in T1-WI and T2-WI sequences.
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Figure 6: Heat map with correlation coefficients between GMM features: 𝑤, 𝜇, and V are the weight, average, and variance, respectively;𝑁
and 𝑇 are the index of normal and tumor (GBM) areas, respectively.

Another aspect of the classification was considered by
using all data based on 51 images (entire GBM) including
17 images T1-WI, T2-WI, and FLAIR. Table 1 shows the
classifier accuracy decrease to 86.27% with 2.94% false alarm
and 10.78% missed detection using BN classifier. Clearly, the
discrimination between GBM and normal brain tissue using
single MR sequence was better than using all together. The
classifier accuracy decreased to 68.62% (see Table 2) when we
applied the PCA which proved again that the GMM features
had no redundancy information in T1-WI and T2-WI and are
better to be used for the discrimination of GBM from normal
brain based on single MRI sequence. Note that BN classifier

showed a better performance than SVM and PNN classifier
model.

Moreover, ROCcurves and the associatedAUChave been
computed. Figure 7 shows the ROC curves to evaluate the
quality of a classifier. Table 4 shows thatAUCvalues of 95.85%
based onGMM features are better than PCA (AUC= 86.16%)
using FLAIR sequence. Clearly, the AUC obtained by using
GMM features were better than those from PCA.

3.3. Comparatives and Discussions. A comparative study was
employed using wavelet based feature [29–31]. Two wavelets,
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Figure 7: ROC curves of GBM and normal area discrimination based on T1-WI, T2-WI, FLAIR, and entire MR mode (T1-WI, T2-WI, and
FLAIR, 51 images): (a) GMM features, (b) PCA features, and (c) Daubechies (db1) and Coiflets (coif1) wavelet features.

namely,Daubechies (db1) andCoiflets (coif1), were considered
[41, 42]. Three quantified functions were computed, namely,
average, standard deviation, and entropy. Classifier accuracy
based on the wavelet features showed the highest accuracy
value of 88.23% (coif1) in T2-WI using SVMand PNN, 79.41%
(coif1) in T1-WI, and 70.58% (db1) in FLAIR sequence using
PNN and NB (see Table 3). ROC curves were associated
with AUC based on wavelet feature (coif1) with range value
74.50−94.46% better than those based on wavelet feature

(db1) which showed values of 68.51–87.54% (Figure 7(c) and
Table 4). We note that the main goal of the feature extraction
using discrete wavelet transform technique is that the approx-
imation coefficients usually contain the most important
information (low frequency). Hence they constitute one part
of the extracted features and another represented by the
critical information from the high-frequency part (details).
In comparison, GBM identification is more promising using
the GMM features with highest accuracy classifier.
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Table 3: Performance metrics (%) based on the wavelets.

Classifier Metrics T1-WI T2-WI FLAIR
db1 coif1 db1 coif1 db1 coif1

NB
Accuracy 67.64 79.41 82.35 85.29 70.58 64.70
False alarm 17.64 8.82 8.82 8.88 8.82 14.70

Missed detection 14.70 8.8235 8.82 8.82 20.58 20.58

SVM
Accuracy 50 76.47 85.29 88.23 58.82 55.88
False alarm 20.58 14.70 2.94 0 8.82 8.82

Missed detection 29.41 8.82 11.76 11.76 32.35 35.29

PNN
Accuracy 70.58 79.41 82.35 88.23 70.588 58.82
False alarm 20.58 20.58 11.76 5.88 20.58 29.41

Missed detection 8.82 0 5.88 5.88 8.82 11.76
∗db1 and coif1 are the first order of Daubechies and Coiflet wavelet, respectively.

Table 4: Comparison of area under (%) ROC curve between three
feature types.

Feature T1-WI T2-WI FLAIR

Wavelets coif1 91.35 94.46 74.5
db1 68.51 87.54 73.7

GMM 92.73 91.70 95.85
PCA 67.82 75.43 86.16

This work is the first focusing on the robust GBM
characteristics using the GMM features, while previous lit-
erature showed the efficiency of the texture and statistical
features analysis to discover brain tumors heterogeneity
[24–27, 38]. Through the texture analysis we find that this
changes depending on the size and number of the pixels in
the determined region. For example, cooccurrence matrix
provides valuable information about the relative position of
the neighboring pixels in an image. It has been proved that
the texture descriptors improve performance of diagnosis
where texture is an important source of image characteristics
[24, 25]. However, GBM region can be easily distinguished
from normal brain areas using the GMM features because we
determined the number of Gaussian components (three com-
ponents in this work [43]), and the number or swap of pixels
did not affect the accuracy result. In other words, the number
of features is independent of the pixels in the brain tumor
image. All GBM tumor regions being diagnosed following
MR imaging, the big advantage of this technique derives
from the robust processing of MRI data to the final decision.

Obviously, neuroradiologists are becoming more and
more important players to early diagnose GBM. Our vision is
to integrate engineering based methods as described in daily
practice to enhance radiologists’ performance beyond their
routine “vision.” In particular in utterly devastating diseases,
like GBM, improvement in any medical specialty involved is
of utmost essence.

As a limitation, this study is based on a single cohort
design and subject to its respective limitations. Second, the
number of 17 patients limited our analysis of theGBMhetero-
geneity. However, there is currently no consensus on how to
assess GBMheterogeneity.Third, the goal of this study was to

analyze the number of images features to determine the effi-
ciency of the GMM features as prognostic indicator. And last,
the entire algorithmworked and collected data automatically.

4. Conclusions

This paper implements the GMM features extracted from
GBM tumor using MR images to assist in radiologic GBM
heterogeneity recognition. By a comparative study of other
features types as PCA and wavelet, this technique resides in
its ability to detect GBM automatically with high accuracy
performance which was difficult previously. Turning to the
future, it is the authors’ intentions to extend this work to
implement a full algorithm integrated on MRI equipment in
order to identify the GBM robustly using GMM features.
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